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Abstract
A function has a transition point when some property changes at the
transition point. Such points represent important features of a function.
We examine three kinds of transition points: sign, monotonicity and
convexity. A sign transition point, usually called a zero-crossing, is
a place where the function changes from negative to positive or vice
versa. At a monotonicity transition point the function changes from
increasing to decreasing or vice versa. At a convexity transition point
the function changes from being convex to concave or vice versa. When
the function is continuous these three kinds of transition points are
roots, maxima/minima, and inection points, respectively. In this note
we specify algorithms for nding the three kinds of transition points.
We formally prove that the algorithms always converge, and we compare
these algorithms with other algorithms. In the proof of the algorithm
for inections, we give a geometric interpretation of the mediant and
its connection to convexity.

Introduction
A TRANSITION POINT is a place where a function has an abrupt change
of some property. Formally, a function f(x) has a transition point for
properties P and Q at x = x0 if there are real numbers a < x0 and b > x0
such that f has property P on the open interval (a,x0) and has property
Q on the open interval (x0, b). Note that the function f(x) is not assumed
to be continuous, and the intervals where f has the properties P and Q do
not include x01.

We will consider three kinds of transition point as follows:
Sign transition point. The sign of the function changes from negative

to positive or vice versa. Such a point is called a zero-crossing. When the
function is continuous, the point is a root (zero) of the function.

Monotonicity transition point. The function changes from increasing
1Technically, the transition point is the point (x0,f(x0)) in the plane. For simplicity

we will omit the reference to f(x0) and refer to x0 as being the transition point.
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to decreasing or vice versa. If the function is continuous, such a transition
point is a local extreme point (i.e., a maximum or minimum).

Convexity transition point, The function changes from convex to con-
cave or vice versa. If the function is continuous, the transition point is an
inection point.

Transition points are often confused with other kinds of points. For
example, zero-crossings are commonly confused with roots. However, these
two notions are dierent in general. Consider the following function:

g(x) =



1◁x if x ̸= 0,
1, if x= 0.

The function g(x) is shown on the left in Figure 1. This function has no
roots but has a zero-crossing at x=0. Next consider the following function:

h(x) =



1◁x2 if x ̸= 0,
0, if x= 0.

The function h(x) is shown on the right in Figure 1. This function has a
root at x= 0 but has no zero-crossings.

Figure 1: Left: A function that has a zero-crossing but no roots
Right: A function that has a root but no zero-crossings
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The distinction between a root and a zero-crossing is signicant
since an algorithm for nding a zero-crossing would not be as eective in
general for nding roots and vice versa. For example, the bisection method
is often described as a method for nding a root of a continuous function
when it is actually a method for nding a zero-crossing of a function that
need not be continuous.

As another example, consider the following function:

k(x) =



x2(1+sin2(1◁x)) if x ̸= 0,
0, if x= 0.

The function k(x) is shown on the left in Figure 2. This function has a
minimum at x = 0, which is not a monotonicity transition point. On the
other hand, consider the following function:

l(x) =



1◁x2 if x ̸= 0,
10, if x= 0.

The function l(x) is shown on the right in Figure 2. This function has a
monotonicity transition point but has no minima or maxima.

Figure 2: Left: A minimum point that is not a monotonicity transition point
Right: A monotonicity transition point that is not a minimum or maximum
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In any algorithm for nding a special point, the function and pos-
sibly derived functions will need to be evaluated. As computations will
generally have limited precision, computed numbers can be indistinguish-
able from one another even though the theoretical numbers are dierent.
In this paper we will write η for the accuracy of the computed function and
any derived expressions. For two numbers y and z, we write y ≈ z to mean
|y− z|≤ η, i.e., y and z are indistinguishable up to the specied precision.

We begin by describing the well-known bisection method for nd-
ing a zero-crossing. We then dene bisection-style algorithms for nding
monotonicity and convexity transition points. Each of the bisection-style
algorithms are compared with other methods for nding special points of
functions. In the Appendix we prove that the newly introduced algorithms
are correct and therefore converge. One interesting feature of the proof of
Theorem 2 is its use of the mediant for numbers other than integers. We
also give a geometric interpretation of the mediant that visually shows its
connection with convexity.

Zero-Crossings
There are number of methods for nding a zero-crossing. All of

the methods start with an interval such that the function has opposite
signs on the endpoints, and the methods iteratively reduce the size of the
interval, which connes the zero-crossing to smaller and smaller intervals.
The method terminates when the interval is smaller than a specied length
or the function value is equal to zero within the precision of the computation
of the function. This forces the zero-crossing to be within the nal interval,
up to the precision of the computations. Algorithms with the property
that the desired point is always within an interval at each iteration are
called bracketing methods. The simplest bracketing method is the bisection
method, which simply splits the interval exactly in two at each iteration.
Another bracketing method is the false position method, also called the
regula falsi method. This method uses the intersection of the secant rather
than the midpoint. The Interpolate Truncate and Project (ITP) method
is an improvement of the false position method that adjusts the secant
intersection in a number of ways that are determined by three parameters
(Oliveira and Takahashi, 2020).

The performance of an algorithm for nding a zero-crossing is mea-
sured by the number of evaluations of the function. The bisection method
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is optimal in the sense that its worst case performance is at least as good
as any other algorithm for nding a zero-crossing (Sikorski, 1982). The
bisection algorithm has the additional advantage that it is simple and re-
quires very little additional computation beyond a function evaluation in
each iteration.

While the bisection method has optimal worst case performance,
the other bracketing methods can have much better performance on some
classes of functions. Moreover, the ITP method is claimed to have the
same optimal worst-case performance as the bisection method (Oliveira
and Takahashi, 2020). However, it is worth noting that part of the reason
why the ITP method achieves the optimal worst-case performance of the bi-
section method is that it defaults to the bisection method when it is unable
to improve on the bisection method. Indeed, every algorithm for nding a
zero-crossing can also achieve the same optimal worst-case performance as
the bisection method by defaulting to the bisection method.

Every bracketing method requires one to specify the function f and
the interval (a,b) where one is looking for a zero-crossing. The interval
must be within the domain of the function, and the function must have
opposite signs on the two endpoints of the interval. One must also specify
the desired accuracy ϵ> 0 of the zero-crossing point and the computational
precision η > 0.

The are two cases for opposite signs. We refer to each one as the
“pattern” of the zero-crossing that is to be found. The following is the
method written in pseudo code:
Iteration:

1. Interpolation: Compute a point c ∈ (a,b) according to the particular
algorithm. For the bisection algorithm, c= a+b

2 . For the false position
algorithm, c= af(b)−bf(a)

f(b)−f(a) ,
2. Search for Pattern: At least one of the pairs (a,c), (c,b) will satisfy

the required pattern.
3. Replace the Pair: Select the pair that satises the required pattern

and replace (a,b) with the selected pair.

Termination Conditions: There are two conditions for terminating the
algorithm.
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1. If b− a ≤ 2ϵ, then the midpoint a+b
2 will be within ϵ of the zero-

crossing. This can be checked at the beginning of the iteration.
2. if f(c)≈ 0, then c is a zero-crossing up to the computational precision.

This can be checked after c has been computed. The accuracy is b−a.
Continuing the algorithm would not be useful since the function is
too close to being a constant equal to 0 for the computations to
distinguish the values from being 0.

Each step of the bisection algorithm requires a function evaluation
and a small number of arithmetic operations. The length of the interval
is reduced by a factor of 2 at each step, so the algorithm will always ter-
minate in no more than


log2

(b−a)
2ϵ


iterations. Furthermore, if a function

has a unique zero-crossing in the interior of the initial interval, then the
bisection method will converge to it because every interval during the iter-
ation will contain the zero-crossing in its interior. As discussed above, the
other bracketing algorithms for nding zero-crossings can have better per-
formance, but will have the same worst-case performance as the bisection
algorithm if they default to the bisection algorithm.

There are other methods that can be used for nding zero-crossings.
The secant method uses the same formula as the false position method, but
does not check the sign of the function on the newly computed point and
uses the newly computed point together with the most recently computed
point for the next iteration. The secant method is not a bracketing method,
and it can fail to converge to the zero-crossing.

Newton’s method is a well-known algorithm for nding a root of
a continuously dierentiable function (Newton’s Method, n.d.). However,
it has a number of disadvantages compared with the bracketing methods.
One must compute and implement the derivative of the function, so it
is necessary to know the analytic formula for the function. Furthermore,
Newton’s method can converge slowly or even diverge, although one can
mitigate this problem by monitoring the performance of Newton’s method
and defaulting to the bisection method when convergence is too slow. On
the other hand, Newton’s method can achieve high rates of convergence.
For example, it can achieve quadratic convergence (i.e., the number of
places in the approximation increases quadratically or better) when the
function is twice continuously dierentiable.
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Monotonicity Transition Points
An extreme point (extremum) is one at which a function has a

maximum or minimum. A frequently used method for nding an extremum
is to dierentiate the function and then nd a root of the derivative. This
is not quite accurate. A root of the derivative need not be an extremum.
For example, the function f(x) = x3 has derivative f ′(x) = 3x2 which is 0
at x= 0 but f(x) does not have an extremum at x= 0. All one can say in
general is that if f(x) is dierentiable and it has an extremum at x, then the
derivative is 0 at x. The converse is not true. On the other hand, a function
can have an extremum without being dierentiable or even continuous at
the extremum, as in the case of the function l(x) shown in Figure 2.

We now dene a method for nding a monotonicity transition point
of a function, which we call the Bisection Monotonicity Method. The
method has the advantage that it does not require one to dierentiate the
function. As with the ordinary bisection method above, there will be two
patterns depending on whether one is seeking a minimum or a maximum.
The algorithm proceeds as follows:
Input: Function f ; three numbers a, b and c in the domain of f such that
a < b < c and such that either f(a)≤ f(b)≥ f(c) (for nding a maximum)
or f(a) ≥ f(b) ≤ f(c) (for nding a minimum); a desired accuracy ϵ > 0;
and a computational precision η > 0.
Iteration:

1. Bisection: Compute the midpoints d= a+b
2 and e= b+c

2 .
2. Search for Pattern: At least one of the triples (a,d,b), (d,b,e) and

(b,e, c) will satisfy the required pattern. The proof that this search
always succeeds is given in Theorem 1 of the Appendix.

3. Replace the Triple: Select any one of the triples that satisfy the
required pattern and replace (a,b, c) with the selected triple.

Termination Conditions: There are two conditions for terminating the
algorithm.

1. If c−a≤ 2ϵ, then the midpoint a+c
2 will be within ϵ of the extremum.

2. if f(a)≈ f(b)≈ f(c), then the function is constant in the interval (a,c)
up to the specied precision, so no further processing can distinguish
any of the points in the interval (a,c).
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For both of the termination conditions, the midpoint a+c
2 will be within

c−a
2 of the extremum. Both termination conditions can be checked at the

beginning of the iteration.
In the Iteration step one could rst try one of the midpoints, say d,

and if f(d) is greater than or equal to f(a) and f(b), then the pattern has
been found without computing the other midpoint and its value. Accord-
ingly, each step of the Bisection Monotonicity Method requires one or two
function evaluations and a small number of arithmetic operations. Note
that the initial triple (a,b, c) need not be equally spaced. However, if the
initial triple is equally spaced, then all subsequent triples during the itera-
tion will also be equally spaced. In this case, the length of the interval is
reduced by a factor of 2 at each step, so the algorithm will terminate in
log2

(c−a)
2ϵ


iterations.

Furthermore, if f is a function on an interval [a,b], and if m ∈ (a,b)
has the property that f is strictly increasing on [a,m] and strictly decreasing
on [m,b] (or vice versa), then the Bisection Monotonicity Method converges
to m. To see why this is so, rst note that when a function is strictly
increasing or decreasing, no triple will satisfy the pattern. So no triple
during the iteration can be entirely within either [a,m] or [m,b]. Therefore,
every interval in the iteration contains m in its interior, and it follows that
the sequence of intervals converges to m.

Convexity Transition Points
An inection is a point at which a function changes from being

concave to convex or vice versa. A frequently used method for nding
an infection is to dierentiate the function twice and then nd a root of
the second derivative. This is not quite accurate. A root of the second
derivative need not be an inection. For example, the function f(x) = x4

has second derivative f ′′(x) = 12x2 which is zero at x = 0, but f(x) does
not have an inection at x= 0. All one can say in general is that if f(x) is
twice dierentiable and it has an inection at x, then the second derivative
is 0 at x. The converse is not true.

We now dene a method for nding a convexity transition point of
a function, which we call the Bisection Convexity Method. The method
has the advantage that it does not require one to dierentiate the function.
As with the ordinary bisection method above, there will be two patterns.
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The algorithm proceeds as follows:
Input: Function f ; four numbers a< b< c< d in the domain of f such that

either f(b)−f(a)
b−a ≤ f(c)−f(b)

c−b ≥ f(d)−f(c)
d−c or f(b)−f(a)

b−a ≥ f(c)−f(b)
c−b ≤ f(d)−f(c)

d−c ; a
required accuracy ϵ> 0; and a computational precision η > 0.
Iteration:

1. Bisection: Compute the midpoints p= a+b
2 ,q = b+c

2 , and r = c+d
2 .

2. Search for Pattern: At least one of the quadruples (a,p,b, q), (p,b,q, c),
(b,q, c,r) and (q,c,r,d) will satisfy the required pattern. The proof
that this search always succeeds is given in Theorem 2 of the Ap-
pendix.

3. Replace the quadruple: Select any one of the quadruples that satisfy
the required pattern and replace (a,b, c,d) with the selected quadru-
ple.

Termination Conditions: There are two conditions for terminating the
algorithm.

1. If d−a≤ 2ϵ, then the midpoint a+d
2 will be within ϵ of the convexity

transition point.
2. If f(b)−f(a)

b−a ≈ f(c)−f(b)
c−b ≈ f(d)−f(c)

d−c , then the function is linear in the
interval (a,d) up to the specied precision, so further processing will
no distinguish any convexity properties in (a,d).

For both of the termination conditions, the midpoint a+d
2 will be within

d−a
2 of the extremum. Both termination conditions can be checked at the

beginning of the iteration.
In the Iteration step one could rst try two of the midpoints, say

p and q, and if one of the quadruples (a,p,b, q) and (p,b,q, c) satises the
pattern, then it is not necessary to compute the last midpoint and its value.
Accordingly, each step of the Bisection Convexity Method requires two or
three function evaluations and a small number of arithmetic operations.
If the initial quadruple (a,b, c,d) is equally spaced, then all quadruples in
the algorithm will also be equally spaced. As a result, the denominators
in a pattern will all be the same, and it will not be necessary to perform
the divisions. In this case, the length of the overall interval is reduced
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by a factor of 2 at each step, so the algorithm will always terminate in
log2

(d−a)
2ϵ


iterations.

Furthermore, if f is a function on an interval [a,b], and if q ∈ (a,b)
has the property that f is strictly convex on [a,q] and strictly concave
on [q,b] (or reversing convex and concave), then the Bisection Convexity
Method converges to q. To see why this is so, rst note that when a func-
tion is strictly convex (respectively, concave), the slopes between successive
points are strictly increasing (respectively, strictly decreasing), and hence
do not satisfy the required pattern. So no quadruple during the iteration
can be entirely within either [a,q] or [q,b]. Therefore, every interval in the
iteration contains q in its interior, and the sequence of intervals converges
to q.

Conclusion
We have introduced the transition point, a new kind of special point

for real-valued functions of a single variable that can be useful for analyzing
properties of such functions. We have also introduced bracketing algorithms
for nding extreme points and inections using bisections. The new algo-
rithms have a number of advantages compared with other techniques, such
as being guaranteed to converge and not requiring any additional eort
such as dierentiating the function one or more times. The only signicant
disadvantage is that the algorithms do not have as good a performance as
other techniques. Furthermore, when using the other techniques, it can be
useful to default to the newly introduced bracketing algorithms so that one
has both higher performance for many cases and guaranteed convergence
in all cases.
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Appendix
In this Appendix, we provide the proofs that the iterations of the

algorithms introduced in this paper always succeed, and therefore the al-
gorithms always converge. We rst prove that the Search for Pattern step
of the Bisection Monotonicity Algorithm always succeeds for the maximum
pattern.

Theorem 1 Let f be a function on the interval [a1,a5], a3 ∈ (a1,a5), a2 ∈
(a1,a3) and a4 ∈ (a3,a5). If f(a1) ≤ f(a3) ≥ f(a5), then there exists i ∈
{1,2,3} such that the inequality pattern f(ai)≤ f(ai+1)≥ f(ai+2) holds.

Proof. There are four cases depending on how f(a3) compares with f(a2)
and f(a4).

1. f(a3)≤ f(a2) and f(a3)≤ f(a4). Since f(a1)≤ f(a3), it follows that
f(a1)≤ f(a2). Therefore, f(a1)≤ f(a2)≥ f(a3) and the pattern with
i= 1 holds.

2. f(a3)≤ f(a2) and f(a3)> f(a4). This implies f(a1)≤ f(a2)≥ f(a3)
as in the rst case above.

3. f(a3)> f(a2) and f(a3)≤ f(a4). Since f(a3)≥ f(a5), it follows that
f(a4)≥ f(a5). Therefore f(a3)≤ f(a4)≥ f(a5) and the pattern with
i= 3 holds.

4. f(a3) > f(a2) and f(a3) > f(a4). These two imply the pattern with
i= 2.

Note that in the rst case above, both cases i= 1 and i= 3 hold. In every
case the pattern holds for at least one i and the theorem follows.

Reversing all of the inequalities in Theorem 1 above gives the result
for the minimum pattern.

We now prove that the Search for Pattern step of the Bisection
Convexity Algorithm always succeeds.
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Theorem 2 Let f be a function on the interval [a1,a7]. Partition [a1,a7]
into 6 subintervals with the sequence {a2,a3,a4,a5,a6}. If f(a3)−f(a1)

a3−a1
≤

f(a5)−f(a3)
a5−a3

≥ f(a7)−f(a5)
a7−a5

, then there exists i ∈ {1,2,3,4} such that the in-
equality pattern f(ai+1)−f(ai)

ai+1−ai
≤ f(ai+2)−f(ai+1)

ai+2−ai+1
≥ f(ai+3)−f(ai+2)

ai+3−ai+2
holds.

The proof of the theorem will use the following operation:
The mediant of ratios a◁c and b◁d, where cd > 0 is the ratio a+b

c+d
(Mediant, n.d.). Although the mediant is only dened for ratios of inte-
gers, it is obviously meaningful for ratios of real numbers in general. The
property of the mediant that we will use is the following proposition. This
proposition is easily proved by multiplying by the denominators and by
canceling the common term. There is a proof in Mediant (n.d.),

Proposition 1 If a,b, c and d are real numbers such that cd > 0 and a
c <

b
d

(respectively, a
c ≤ b

d), then
a
c <

a+b
c+d < b

d (respectively, a
c ≤ a+b

c+d ≤ b
d).

Figure 3: A geometric interpretation of the mediant

The mediant has a geometric interpretation. Suppose that one has
three points A, B and C that proceed from left to right in the plane, i.e.,
the x-coordinates of A, B and C are strictly increasing. Figure 3 shows an
example. Then the slope of AC is the mediant of the slopes of AB and
BC.2 Geometrically, it is easy to see that the slope of AC will always be
between the slope of AB and the slope of BC, which is the conclusion of
Proposition 1. Moreover, ABC will be concave or convex depending on the
order of the slopes of AB and BC.

2To be more precise, the ratio dening the slope of AC is the mediant of the ratios
that dene the slopes of AB and BC.
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Proof of Theorem 2. For simplicity in the proof, we will write yj for f(aj).
There are 32 cases depending on how yj+1−yj

aj+1−aj
compares with yj+2−yj+1

aj+2−aj+1
, for

j ∈ {1,2,3,4,5}. For technical reasons, the comparisons for j = 1,2 are >
and ≤; whereas the comparisons for j > 2 are ≥ and <. To deal with the
large number of cases, we group them into sets denoted by ve inequality
symbols or asterisks. For example, the set {>>≥ ∗∗} denotes the set of
cases in which

y2−y1
a2−a1

>
y3−y2
a3−a2

, y3−y2
a3−a2

>
y4−y3
a4−a3

, y4−y3
a4−a3

≥ y5−y4
a5−a4

,

and the remaining two inequalities can be in either direction, so the set
{>>≥ ∗∗} has 4 cases in all.

Set 1. {>>≥ ∗∗} Applying Proposition 1 to each of the rst three
inequalities gives the following inequalities:

y2−y1
a2−a1

>
y3−y1
a3−a1

>
y3−y2
a3−a2

>
y4−y2
a4−a2

>
y4−y3
a4−a3

≥ y5−y3
a5−a3

≥ y5−y4
a5−a4

In particular, we have that y3−y1
a3−a1

> y5−y3
a5−a3

. However, by hypothesis we have
that y3−y1

a3−a1
≤ y5−y3

a5−a3
. It follows that none of the 4 cases in Set 1 ever occur.

Set 2. {∗∗ <<<} Proceed as in Set 1 by applying Proposition 1 three
times. As with Set 1, it follows that none of the 4 cases in Set 2 ever occur.

Set 3. {≤> ∗ ∗ ∗} The rst two inequalities imply the pattern with
j = 1. There are 8 cases in this set, one of which is in Set 2.

Set 4. {∗ ≤≥ ∗∗} The second and third inequalities imply the pattern
with j = 2. There are 8 cases in this set, none of which are in earlier sets.

Set 5. {∗∗ <≥ ∗} The third and fourth inequalities imply the pattern
with j = 3. There are 8 cases in this set, two of which are also in Set 3.

Set 6. {∗∗∗<≥} The last two inequalities imply the pattern with j = 4.
There are 8 cases in this set, ve of which are in previous sets.
All 32 cases have been accounted for, and for every case that can occur,
one or more of the inequality patterns hold. The theorem then follows.

Reversing all of the inequalities in Theorem 2 above gives the result
for the other inection pattern.
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